Estrogen Receptor-α Overexpression Suppresses 17β-Estradiol-Mediated Vascular Endothelial Growth Factor Expression and Activation of Survival Kinases

Author:

Bake Shameena1,Ma Lijiang1,Sohrabji Farida1

Affiliation:

1. Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, College Station, Texas 77843-1114

Abstract

Estrogen and its receptors influence growth and differentiation by stimulating the production and secretion of growth factors. Our previous studies indicate an increased expression of estrogen receptor (ER)-α and decreased growth factor synthesis in the olfactory bulb of reproductive senescent female rats as compared with young animals. The present study tests the hypothesis that abnormal overexpression of ERα contributes to decreased growth factor synthesis. We developed the HeLa-Tet-On cell line stably transfected with ERα (HTERα) that expresses increasing amounts of ERα with increasing doses of doxycycline (Dox). Increasing doses of Dox had no effect on vascular endothelial growth factor (VEGF) secretion in HTERα cells. However, in the presence of 40 nm 17β-estradiol, VEGF secretion increased in low-dose Dox-exposed HTERα cultures, which was attenuated by the ERα antagonist, 1,3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]1H-pyrazole dihydrochloride. However, at high-dose Dox and, consequently, high ERα levels, estradiol failed to increase VEGF. In the HeLa X6 cell line in which the Tet-On construct is upstream of an unrelated gene (Pitx2A), estradiol failed to induce VEGF at any Dox dose. Furthermore, in the HTERα cell line, estradiol selectively down-regulates phospho-ERK2 and phospho-Akt at high ERα expression. This study clearly demonstrates that the dose of receptor critically mediates estradiol’s ability to regulate growth factors and survival kinases. The present data also support the hypothesis that 17β-estradiol treatment to an ERα overexpressing system, such as the senescent brain, could reverse the normally observed beneficial effect of estrogen.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3