Postnatal Remodeling of Dendritic Structure and Spine Density in Gonadotropin-Releasing Hormone Neurons

Author:

Cottrell Elizabeth C.,Campbell Rebecca E.,Han Seong-Kyu,Herbison Allan E.

Abstract

The GnRH neurons represent the output cells of the neuronal network controlling gonadal function. Their activation initiates the onset of puberty, but the underlying mechanisms remain unclear. Using a GnRH-green fluorescent protein mouse model, we have been able to fill individual GnRH neurons with biocytin in the acute brain slice preparation to examine their morphological characteristics across puberty. GnRH neurons in prepubertal male mice [postnatal d 10–15 (PND10–15)] exhibited half as many dendritic and somal spines as adult male mice (>PND60; P < 0.05) but, surprisingly, a much more complex dendritic tree with 5-fold greater branch points (P < 0.05). Experiments examining somal and proximal dendritic spine numbers in vivo, in perfusion-fixed tissue from GnRH-green fluorescent protein mice, revealed the same pattern of approximately twice as many spines on adult GnRH neurons compared with PND10 male mice (P < 0.01). In contrast to the spine density alterations, reflecting changing excitatory input, confocal immunofluorescence studies revealed no differences in the numbers of vesicular γ-aminobutyric acid transporter-immunoreactive elements adjacent to GnRH soma or proximal dendrites in prepubertal and adult male mice. Experiments evaluating dendritic tree structure in vivo (PND3, -10, and -35 and adult) revealed that GnRH neurons located in the rostral preoptic area, but not the medial septum, exhibited a more complex branching pattern at PND10, but that this was adult-like by PND35. These studies demonstrate unexpected dendritic tree remodeling in the GnRH neurons and provide evidence for an increase in direct excitatory inputs to GnRH neurons across the time of puberty.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference59 articles.

1. Development of gonadotropin-releasing hormone-1 neurons;Wray;Front Neuroendocrinol,2002

2. Physiology of the GnRH neuronal network;Herbison,2006

3. Neurobiological mechanisms of the onset of puberty in primates;Terasawa;Endocr Rev,2001

4. Puberty in the rat;Ojeda,2006

5. Puberty in nonhuman primates and humans;Plant,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3