Targeting the Manifestations of Subclinical and Overt Hypothyroidism Within the Hippocampus

Author:

Rovet Joanne F12ORCID

Affiliation:

1. Department of Paediatrics, University of Toronto , Toronto, ON M5G1X8 , Canada

2. Neurosciences and Mental Health Program, The Hospital for Sick Children , Toronto, ON M5G0A4 , Canada

Abstract

Abstract Background The past decade has witnessed a surge of articles describing the neurocognitive sequelae and associated structural and functional brain abnormalities of patients with overt hypothyroidism (OH) and subclinical hypothyroidism (SCH). Findings show effects primarily within the frontal lobes with usually worse outcomes for OH than SCH. Several recent studies have also indicated hypothyroid patients may have smaller hippocampi, a key structure for memory. Context The JCEM paper by Zhang and colleagues applies 2 novel approaches for analyzing hippocampal structure and function. One uses an automated processing tool that segments the hippocampus into distinct subregions, and the other performs connectivity analysis to assess the relationships between specific hippocampal subregions and cortical areas. Relatively large samples of OH and SCH patients and healthy controls received a test of global cognitive functioning and underwent structural and functional magnetic resonance imaging. Results showed hypothyroid groups scored significantly below controls on the memory scale and also had smaller hippocampal volumes in selective subregions. Effects were stronger for SCH than OH groups, who also showed different patterns of interconnectivity between hippocampal subregions and specific frontal lobe areas. Interpretation To make sense of these findings, I explored the rodent and human literatures on thyroid hormone's role in hippocampal functioning and on hippocampal subfields and their purported functions and interconnections. Because current results suggest SCH may represent a distinct clinical entity with unique brain manifestations, I hypothesized 2 explanations for these findings, one involving transporter defects in the brain barriers and the other, differential neurodegeneration of the blood-brain barrier vascular unit.

Publisher

The Endocrine Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3