Noncoding Mutations in a Thyroid Hormone Receptor Gene That Impair Cone Photoreceptor Function

Author:

Liu Hong1ORCID,Lu Ailing1ORCID,Kelley Kevin A2ORCID,Forrest Douglas1ORCID

Affiliation:

1. NIDDK, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health , Bethesda, MD 20892 , USA

2. Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai , New York, NY 10029 , USA

Abstract

Abstract The function of a hormone receptor requires mechanisms to control precisely where, when, and at what level the receptor gene is expressed. An intriguing case concerns the selective induction of thyroid hormone receptor β2 (TRβ2), encoded by Thrb, in the pituitary and also in cone photoreceptors, in which it critically regulates expression of the opsin photopigments that mediate color vision. Here, we investigate the physiological significance of a candidate enhancer for induction of TRβ2 by mutagenesis of a conserved intron region in its natural context in the endogenous Thrb gene in mice. Mutation of e-box sites for bHLH (basic-helix-loop-helix) transcription factors preferentially impairs TRβ2 expression in cones whereas mutation of nearby sequences preferentially impairs expression in pituitary. A deletion encompassing all sites impairs expression in both tissues, indicating bifunctional activity. In cones, the e-box mutations disrupt chromatin acetylation, blunt the developmental induction of TRβ2, and ultimately impair cone opsin expression and sensitivity to longer wavelengths of light. These results demonstrate the necessity of studying an enhancer in its natural chromosomal context for defining biological relevance and reveal surprisingly critical nuances of level and timing of enhancer function. Our findings illustrate the influence of noncoding sequences over thyroid hormone functions.

Funder

National Institutes of Health

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3