iTRAQ-based Proteomic Analysis Unveils ACSL4 as a Novel Potential Regulator of Human Endometrial Receptivity

Author:

Hu Shuanggang1ORCID,Sun Zhe1,Li Boyu1,Zhao Hanting1,Wang Yuan1,Yao Guangxin1,Li Xinyu1,Bian Xuejiao1,Li Tin Chiu2,Vankelecom Hugo3,Sun Yun1ORCID

Affiliation:

1. Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200135 , China

2. Department of Obstetrics and Gynaecology, Chinese University of Hong Kong , Hong Kong 999077 , China

3. Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven) , B-3000 Leuven , Belgium

Abstract

Abstract Competent endometrial receptivity is a prerequisite for successful embryo implantation. Identification of novel key molecules involved in endometrial receptivity is essential to better interpret human implantation and improve pregnancy rates in assisted reproduction treatment. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics was performed to profile the proteomes of the prereceptive (luteinizing hormone [LH] + 2, n = 4) and receptive (LH + 7, n = 4) endometrial tissues. A total of 173 differentially expressed proteins (DEPs) between LH + 2 and LH + 7 endometrial samples were identified. Integrated analysis of the proteomic data and published transcriptomic data was performed to identify the concordant DEPs with differential expression at both the messenger RNA and protein levels. Protein-protein interaction (PPI) network analysis was performed on concordant DEPs. We first identified 63 novel concordant DEPs and 5 hub proteins (ACSL4, ACSL5, COL1A1, PTGS1, and PLA2G4F) between LH + 2 and LH + 7 endometrial samples. ACSL4 was predominantly expressed in endometrial epithelial cells and its expression was significantly upregulated by progesterone in the LH + 7 endometrium and significantly downregulated in repeated implantation failure patients. Knockdown of ACSL4 in endometrial epithelial cells induced the downregulation of endometrial receptivity markers (HOXA10, COX2, and LIF) and the significant decrease of implantation rate during in vitro implantation analysis. This study provides the first gel-independent quantitative proteomes of the LH + 2 and LH + 7 human endometrium using iTRAQ technology. The identified concordant DEPs and hub proteins open a new avenue for future studies aimed at elucidating the underlying mechanisms governing endometrial receptivity. ACSL4 was identified as a novel regulatory molecule in the establishment of endometrial receptivity and might play important roles during implantation.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

SHDC

Shanghai Municipal Education Commission

Gaofeng Clinical Medicine

Shanghai Jiaotong University School of Medicine

Renji Hospital

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3