A Novel Mechanism of hPRL-G129R, a Prolactin Antagonist, Inhibits Human Breast Cancer Cell Proliferation and Migration

Author:

Li Ruonan1ORCID,Yang Yu12,Lan Hainan3,Wang Yuesi1,Ge Zihan1,Liu Xingjie1,Zhou Yixuan1,Zhang Wei1,Xian Li1,Yuan Hongxuan4

Affiliation:

1. Medicine and Pharmacy Research Center, Binzhou Medical University , Yantai 264003 , China

2. State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193 , China

3. College of Animal Science and Technology, Jilin Agricultural University , Changchun 130118 , China

4. College of Medicine, Yanbian University , Yanji 133002 , China

Abstract

Abstract Prolactin (PRL) and its receptor, PRLR, are closely related to the occurrence and development of breast cancer. hPRL-G129R, an hPRLR antagonist, has been found to induce apoptosis in breast cancer cells via mechanisms currently unknown. Recent studies have indicated that PRLR exhibits dual functions based on its membrane/nucleus localization. In that context, we speculated whether hPRL-G129R is a dual-function antagonist. We studied the internalization of the hPRLR-G129R/PRLR complex using indirect immunofluorescence and Western blot assays. We found that hPRL-G129R not only inhibited PRLR-mediated intracellular signaling at the plasma membrane, but also blocked nuclear localization of the receptor in T-47D and MCF-7 cells in a time-dependent manner. Clone formation and transwell migration assays showed that hPRL-G129R inhibited PRL-driven proliferation and migration of tumor cells in vitro. Further, we found that increasing concentrations of hPRL-G129R inhibited the nuclear localization of PRLR and the levels of signal transducer and activator of transcription (STAT) 5 in tumor-bearing mice and hPRL-G129R also exerted an antiproliferative effect in vivo. These results indicate that hPRL-G129R is indeed a dual-function antagonist. This study lays a foundation for exploring and developing highly effective agents against the proliferation and progression of breast malignancies.

Funder

National Natural Science Foundation of China-Young Scientists Fund

Scientific Research Launch Fund of Binzhou Medical College

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3