Estrogen Is Not Essential for Full Endometrial Restoration after Breakdown: Lessons from a Mouse Model

Author:

Kaitu’u-Lino Tu’uhevaha J.12,Morison Naomi B.1,Salamonsen Lois A.1

Affiliation:

1. Prince Henry’s Institute of Medical Research (T.J.K.-L., N.B.M., L.A.S.), Monash University, Clayton, Victoria 3168, Australia

2. Department of Obstetrics and Gynecology (T.J.K.-L.), Monash University, Clayton, Victoria 3168, Australia

Abstract

The current dogma surrounding endometrial regeneration after menses includes a critical need for estrogen-primed proliferation. Although some evidence suggests that estrogen may not be required for the initial reepithelialization of the uterine surface, it is widely believed that it is essential for successful stromal renewal. This study aimed to identify proliferating cell types during endometrial repair and to examine whether estrogen is required for successful repair using a previously developed mouse model. In the model, decidualization is artificially induced, and progesterone support withdrawn; the endometrial tissue progressively breaks down by 24 h after progesterone withdrawal and by 48 h has usually undergone complete repair. Although the mice are ovariectomized, restoration of both the stromal and epithelial components proceeds rapidly after breakdown and results in what appears to be a normal endometrium. However, potential estrogenic influences from extraovarian sources (particularly the diet and fat) remain. In this study, complete removal of extraovarian estrogen was achieved by maintenance of animals on a soy-free diet and administration of aromatase inhibitor letrozole. No significant differences in uterine weight or estrogen-responsive genes lactoferrin and progesterone receptor were observed compared with control ovariectomized but otherwise untreated mice, whereas significantly higher measurements were obtained from an estrogen-added group. Importantly, no significant difference in the rate of endometrial repair was observed in the complete absence of estrogen, demonstrating that estrogen is not essential for complete endometrial restoration in this model.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3