Nesfatin-1 Neurons in Paraventricular and Supraoptic Nuclei of the Rat Hypothalamus Coexpress Oxytocin and Vasopressin and Are Activated by Refeeding

Author:

Kohno Daisuke1,Nakata Masanori1,Maejima Yuko1,Shimizu Hiroyuki2,Sedbazar Udval1,Yoshida Natsu1,Dezaki Katsuya1,Onaka Tatsushi3,Mori Masatomo2,Yada Toshihiko

Affiliation:

1. Division of Integrative Physiology (D.K., M.N., Y.M., U.S., N.Y., K.D., T.Y.), Department of Physiology, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan

2. Department of Medicine and Molecular Science (H.S., M.M.), Gunma University Graduate School of Medicine, Gunma 371-8511, Japan

3. Division of Brain and Neurophysiology (T.O.), Department of Physiology, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan

Abstract

Nesfatin-1, a newly discovered satiety molecule, is located in the hypothalamic nuclei, including the paraventricular nucleus (PVN) and supraoptic nucleus (SON). In this study, fine localization and regulation of nesfatin-1 neurons in the PVN and SON were investigated by immunohistochemistry of neuropeptides and c-Fos. In the PVN, 24% of nesfatin-1 neurons overlapped with oxytocin, 18% with vasopressin, 13% with CRH, and 12% with TRH neurons. In the SON, 35% of nesfatin-1 neurons overlapped with oxytocin and 28% with vasopressin. After a 48-h fast, refeeding for 2 h dramatically increased the number of nesfatin-1 neurons expressing c-Fos immunoreactivity by approximately 10 times in the PVN and 30 times in the SON, compared with the fasting controls. In the SON, refeeding also significantly increased the number of nesfatin-1-immunoreactive neurons and NUCB2 mRNA expression, compared with fasting. These results indicate that nesfatin-1 neurons in the PVN and SON highly overlap with oxytocin and vasopressin neurons and that they are activated markedly by refeeding. Feeding-activated nesfatin-1 neurons in the PVN and SON could play a role in the postprandial regulation of feeding behavior and energy homeostasis.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3