Serotonin Acts Through 5-HT1 and 5-HT2 Receptors to Exert Biphasic Actions on GnRH Neuron Excitability in the Mouse

Author:

Bhattarai Janardhan P.1,Roa Juan2,Herbison Allan E.2,Han Seong Kyu1

Affiliation:

1. Department of Oral Physiology (J.P.B., S.K.H.), School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561–756, Republic of Korea

2. Centre for Neuroendocrinology and Department of Physiology (J.R., A.E.H.), University of Otago School of Medical Sciences, Dunedin 9054, New Zealand

Abstract

The effect of serotonin (5-HT) on the electrical excitability of GnRH neurons was examined using gramicidin perforated-patch electrophysiology in transgenic GnRH-green fluorescent protein mice. In diestrous female, the predominant effect of 5-HT was inhibition (70%) with 50% of these cells also exhibiting a late-onset excitation. Responses were dose dependent (EC50 = 1.2μM) and persisted in the presence of amino acid receptor antagonists and tetrodotoxin, indicating a predominant postsynaptic action of 5-HT. Studies in neonatal, juvenile, peripubertal, and adult mice revealed that 5-HT exerted less potent responses from GnRH neurons with advancing postnatal age in both sexes. In adult male mice, 5-HT exerted less potent hyperpolarizing responses with more excitations compared with females. In addition, adult proestrous female GnRH neurons exhibited reduced inhibition and a complete absence of biphasic hyperpolarization-excitation responses. Studies using 5-HT receptor antagonists demonstrated that the activation of 5-HT1A receptors mediated the inhibitory responses, whereas the excitation was mediated by the activation of 5-HT2A receptors. The 5-HT-mediated hyperpolarization involved both potassium channels and adenylate cyclase activation, whereas the 5-HT excitation was dependent on protein kinase C. The effects of exogenous 5-HT were replicated using fluoxetine, which enhances endogenous 5-HT levels. These studies demonstrate that 5-HT exerts a biphasic action on most GnRH neurons whereby a fast 5HT1A-mediated inhibition occurs alongside a slow 5-HT2A excitation. The balance of 5-HT-evoked inhibition vs excitation is developmentally regulated, sexually differentiated, and variable across the estrous cycle and may play a role in regulation of hypothalamic-pituitary-gonadal axis throughout postnatal development.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3