Affiliation:
1. Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
2. Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
Abstract
AbstractFSH exists as different glycoforms that differ in glycosylation of the hormone-specific β-subunit. Tetra-glycosylated FSH (FSH24) and hypo-glycosylated FSH (FSH18/21) are the most abundant glycoforms found in humans. Employing distinct readouts in HEK293 cells expressing the FSH receptor, we compared signaling triggered by human pituitary FSH preparations (FSH18/21 and FSH24) as well as by equine FSH (eFSH), and human recombinant FSH (recFSH), each exhibiting distinct glycosylation patterns. The potency in eliciting cAMP production was greater for eFSH than for FSH18/21, FSH24, and recFSH, whereas in the ERK1/2 activation readout, potency was highest for FSH18/21 followed by eFSH, recFSH, and FSH24. In β-arrestin1/2 CRISPR/Cas9 HEK293-KO cells, FSH18/21 exhibited a preference toward β-arrestin-mediated ERK1/2 activation as revealed by a drastic decrease in pERK during the first 15-minute exposure to this glycoform. Exposure of β-arrestin1/2 KO cells to H89 additionally decreased pERK1/2, albeit to a significantly lower extent in response to FSH18/21. Concurrent silencing of β-arrestin and PKA signaling, incompletely suppressed pERK response to FSH glycoforms, suggesting that pathways other than those dependent on Gs-protein and β-arrestins also contribute to FSH-stimulated pERK1/2. All FSH glycoforms stimulated intracellular Ca2+ (iCa2+) accumulation through both influx from Ca2+ channels and release from intracellular stores; however, iCa2+ in response to FSH18/21 depended more on the latter, suggesting differences in mechanisms through which glycoforms promote iCa2+ accumulation. These data indicate that FSH glycosylation plays an important role in defining not only the intensity but also the functional selectivity for the mechanisms leading to activation of distinct signaling cascades.
Funder
National Institutes of Health
CONACyT
National University of Mexico
Subject
Endocrinology, Diabetes and Metabolism
Reference105 articles.
1. Glycoprotein hormone GalNAc-4-sulphotransferase;Baenziger;Biochem Soc Trans.,2003
2. Biosynthesis and secretion of follicle-stimulating hormone;Chappel;Endocr Rev.,1983
3. Glycoprotein hormones: structure and function;Pierce;Annu Rev Biochem.,1981
4. Structural features of mammalian gonadotropins;Bousfield;Mol Cell Endocrinol.,1996
5. Macro- and micro-heterogeneity in pituitary and urinary follicle-stimulating hormone glycosylation;Bousfield;J Glycomics Lipidomics.,2014
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献