Glucocorticoid Receptor Antagonism Improves Glucose Metabolism in a Mouse Model of Polycystic Ovary Syndrome

Author:

Li Sheng12,Ying Zhixiong12ORCID,Gentenaar Max12,Rensen Patrick C N12ORCID,Kooijman Sander12ORCID,Visser Jenny A3,Meijer Onno C12ORCID,Kroon Jan12ORCID

Affiliation:

1. Department of Medicine, Division of Endocrinology, Leiden University Medical Center , 2333ZA Leiden , the Netherlands

2. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center , 2333ZA Leiden , the Netherlands

3. Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , 3015 GD Rotterdam , the Netherlands

Abstract

Abstract Context Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with obesity, insulin resistance, and dyslipidemia. Hyperandrogenism is a major characteristic of PCOS. Increased androgen exposure is believed to deregulate metabolic processes in various tissues as part of the PCOS pathogenesis, predominantly through the androgen receptor (AR). Notably, various metabolic features in PCOS are similar to those observed after excess glucocorticoid exposure. Objective We hypothesized that glucocorticoid receptor (GR) signaling is involved in the metabolic symptoms of PCOS. Methods In a PCOS model of chronic dihydrotestosterone (DHT) exposure in female mice, we investigated whether GR signaling machinery was (de)regulated, and if treatment with a selective GR antagonist alleviated the metabolic symptoms. Results We observed an upregulation of GR messenger RNA expression in the liver after DHT exposure. In white adipose tissues and liver we found that DHT upregulated Hsd11b1, which encodes for the enzyme that converts inactive into active glucocorticoids. We found that preventive but not therapeutic administration of a GR antagonist alleviated DHT-induced hyperglycemia and restored glucose tolerance. We did not observe strong effects of GR antagonism in DHT-exposed mice on other features like total fat mass and lipid accumulation in various tissues. Conclusion We conclude that GR activation may play a role in glucose metabolism in DHT-exposed mice.

Publisher

The Endocrine Society

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3