Inhibition of NR5A1 Phosphorylation Alleviates a Transcriptional Suppression Defect Caused by a Novel NR0B1 Mutation

Author:

Abe Ichiro1ORCID,Tanaka Tomoko2ORCID,Ohe Kenji3ORCID,Fujii Hideyuki1,Nagata Mai1,Ochi Kentaro1,Senda Yuki1,Takeshita Kaori1,Koga Midori1,Kudo Tadachika1,Enjoji Munechika3,Yanase Toshihiko4,Kobayashi Kunihisa1

Affiliation:

1. Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka 818-8502, Japan

2. Department of Regenerative Medicine and Transplantation, Fukuoka University, 7-45-1 Nanakuma Jonan-ku, Fukuoka, 814-0180, Japan

3. Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-180, Japan

4. Seiwakai Muta Hospital, 3-9-1 Hoshikuma, Sawara-ku, Fukuoka 814-0163, Japan

Abstract

Abstract Context Mutations in the NR0B1 gene, also well-known as the DAX1 gene, are known to cause congenital adrenal hypoplasia associated with hypogonadotropic hypogonadism. The abnormal NR0B1 protein fails to suppress the transcription of promoters of steroidogenic enzymes, which are also targets of NR5A1 protein, also well-known as Ad4BP/SF-1 protein. Since NR5A1 and NR0B1 have antagonistic effects on steroidogenesis, the loss of function due to NR0B1 mutations may be compensated by inducing loss of function of NR5A1 protein. Patient A middle-aged man was diagnosed with congenital adrenal hypoplasia associated with hypogonadotropic hypogonadism and genetic analysis revealed him to have a novel NR0B1 mutation, c.1222C>T(p.Gln408Ter). Methods NR0B1 activity was evaluated in CLK1/4 inhibitor-treated 293T cells via immunoblotting and luciferase assays of the STAR promoter. Results TG003 treatment suppressed NR5A1 protein function to compensate for the mutant NR0B1 showing inhibited suppression of transcription. Immunoblotting analyses showed that the phosphorylation status of NR5A1 at Ser203 was attenuated by the CLK1/4 inhibitor. Conclusion The specific reduction of NR5A1 phosphorylation by a CLK1/4 inhibitor may alleviate developmental defects in patients with NR0B1 mutations.

Funder

Grant-in-Aid for Scientific Research

Fukuoka University

Publisher

The Endocrine Society

Subject

Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3