Chemerin, a Novel Regulator of Follicular Steroidogenesis and Its Potential Involvement in Polycystic Ovarian Syndrome

Author:

Wang Qi12,Kim Ji Young12,Xue Kai23,Liu Jia-yin3,Leader Arthur124,Tsang Benjamin K.125

Affiliation:

1. Departments of Cellular and Molecular Medicine and Obstetrics and Gynecology (Q.W., J.Y.K., A.L., B.K.T.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1Y 4E9

2. Chronic Disease Program (Q.W., J.Y.K., K.X., A.L., B.K.T.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1Y 4E9

3. State Key Laboratory in Reproductive Medicine (K.X., J.L.), Clinical Reproductive Medicine Centre, Nanjing Medical University, Nanjing 210008, Peoples' Republic of China

4. Ottawa Fertility Centre (A.L.), Ottawa, Ontario, Canada K2C 3V4

5. World Class University Biomodulation Major (B.K.T.), Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea

Abstract

Abstract Polycystic ovarian syndrome (PCOS) is a heterogeneous syndrome associated with follicle growth arrest, minimal granulosa cell proliferation, dysregulated sex hormone profile, hyperthecosis, and insulin resistance. Using a 5α-dihydrotestosterone (DHT)-induced rat model that recapitulates the reproductive and metabolic phenotypes of human PCOS, we have examined the steroidogenic capability of granulosa cells from DHT-treated rats. Gene expression of several key steroidogenic enzymes including p450 side-chain cleavage enzyme (p450scc), aromatase, steroidogenic acute regulatory protein, hydroxysteroid dehydrogenase-17β, and hydroxysteroid dehydrogenase-3β were markedly lower in DHT-treated rats than the controls, although the responsiveness of their granulosa cells to FSH was higher. Expression of the adipokine chemerin and its receptor, chemokine receptor-like 1, was evident in control and DHT-treated rats, with significantly higher ovarian mRNA abundances and protein contents of chemerin and its receptor. Recombinant chemerin decreases basal estradiol secretion in granulosa cells from DHT-treated rats. When the inhibitory role of chemerin on steroidogenesis was further examined in vitro, chemerin suppressed FSH-induced progesterone and estradiol secretion in cultured preantral follicles and granulosa cells. Chemerin also inhibits FSH-induced aromatase and p450scc expression in granulosa cells. Overexpression of nuclear receptors NR5a1 and NR5a2 promotes p450scc and aromatase expression, respectively, which is suppressed by chemerin. These findings suggest that chemerin is a novel negative regulator of FSH-induced follicular steroidogenesis and may contribute to the pathogenesis of PCOS.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3