Estren Behaves as a Weak Estrogen Rather than a Nongenomic Selective Activator in the Mouse Uterus

Author:

Hewitt Sylvia C.,Collins Jennifer,Grissom Sherry,Hamilton Katherine,Korach Kenneth S.

Abstract

A proposed membrane-mediated mechanism of rapid nongenomic response to estrogen has been the intense focus of recent research. Estren, a synthetic steroid, is reported to act selectively through a rapid membrane-mediated pathway, rather than through the classical nuclear estrogen receptor (ER)-mediated pathway, to maintain bone density in ovariectomized mice without uterotropic effects. To evaluate the mechanism and physiological effects of estren, we studied responses in adult ovariectomized mice. In a 3-d uterine bioassay, we found that 300 μg estren significantly increased uterine weight; in comparison, a more maximal response was seen with 1 μg estradiol (E2). The estren response was partly ERα independent, because ERα knockout (αERKO) uteri also exhibited a more moderate weight increase. Estren induced epithelial cell proliferation in wild-type, but not αERKO, mice, indicating ERα dependence of the epithelial growth response. Examination of estren-regulated uterine genes by microarray indicated that early (2 h) changes in gene expression are similar to the early responses to E2. These gene responses are ERα dependent, because they are not seen in αERKO mice. Later estren-induced changes in gene expression (24 h) are blunted compared with those seen 24 h after E2. In contrast to early genes, these later estren responses are independent of ERα, because the αERKO shows a similar response to estren at 24 h. We found that E2 or estren treatments lead to depletion of ERα in the uterine cytosol fraction and accumulation in the nuclear fraction within 30–60 min, consistent with the ability of estren to regulate genes through a nuclear ERα rather than a nongenomic mechanism. Interestingly, estren, but not E2, induces accumulation of androgen receptor (AR) in the nuclear fraction of both wild-type and αERKO samples, suggesting that AR might be involved in the later ERα-independent genomic responses to estren. In conclusion, our studies suggest that estren is weakly estrogenic in the mouse uterus and might induce nuclear ERα- and AR-mediated responses. Given its activity in our uterine model, the use of estren as a bone-selective clinical compound needs to be reconsidered.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference18 articles.

1. Lessons in estrogen biology from knockout and transgenic animals.;Hewitt;Annu Rev Physiol,2005

2. Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen.;Hewitt;Mol Endocrinol,2003

3. Global uterine genomics in vivo: microarray evaluation of the estrogen receptor-growth factor cross-talk mechanism.;Hewitt;Mol Endocrinol,2005

4. Rapid actions of plasma membrane estrogen receptors.;Kelly;Trends Endocrinol Metab,2001

5. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity.;Kousteni;Cell,2001

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3