Reduced Cardiac Efficiency and Altered Substrate Metabolism Precedes the Onset of Hyperglycemia and Contractile Dysfunction in Two Mouse Models of Insulin Resistance and Obesity

Author:

Buchanan Jonathan,Mazumder Pradip K.,Hu Ping,Chakrabarti Gopa,Roberts Matthew W.,Yun Ui Jeong,Cooksey Robert C.,Litwin Sheldon E.,Abel E. Dale

Abstract

Hyperglycemia is associated with altered myocardial substrate use, a condition that has been hypothesized to contribute to impaired cardiac performance. The goals of this study were to determine whether changes in cardiac metabolism, gene expression, and function precede or follow the onset of hyperglycemia in two mouse models of obesity, insulin resistance, and diabetes (ob/ob and db/db mice). Ob/ob and db/db mice were studied at 4, 8, and 15 wk of age. Four-week-old mice of both strains were normoglycemic but hyperinsulinemic. Hyperglycemia develops in db/db mice between 4 and 8 wk of age and in ob/ob mice between 8 and 15 wk. In isolated working hearts, rates of glucose oxidation were reduced by 28–37% at 4 wk and declined no further at 15 wk in both strains. Fatty acid oxidation rates and myocardial oxygen consumption were increased in 4-wk-old mice of both strains. Fatty acid oxidation rates progressively increased in db/db mice in parallel with the earlier onset and greater duration of hyperglycemia. In vivo, cardiac catheterization revealed significantly increased left ventricular contractility and relaxation (positive and negative dP/dt) in both strains at 4 wk of age. dP/dt declined over time in db/db mice but remained elevated in ob/ob mice at 15 wk of age. Increased β-myosin heavy chain isoform expression was present in 4-wk-old mice and persisted in 15-wk-old mice. Increased expression of peroxisomal proliferator-activated receptor-α regulated genes was observed only at 15 wk in both strains. These data indicate that altered myocardial substrate use and reduced myocardial efficiency are early abnormalities in the hearts of obese mice and precede the onset of hyperglycemia. Obesity per se does not cause contractile dysfunction in vivo, but loss of the hypercontractile phenotype of obesity and up-regulation of peroxisomal proliferator-activated receptor-α regulated genes occur later and are most pronounced in the presence of longstanding hyperglycemia.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 435 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3