Comparison of Legiolert and a Conventional Culture Method for Detection of Legionella pneumophila from Cooling Towers in Québec

Author:

Barrette Isabelle1

Affiliation:

1. EnvironeX Group, 2325 Fernand-Lafontaine Blvd, Longueuil, QC J4N 1N7, Canada

Abstract

Abstract Background: Legionnaires’ disease is a potentially lethal pneumonia contracted through inhalation of aerosolized water contaminated with Legionella bacteria. Detection and control of L. pneumophila, the primary species responsible for the disease, is critical to public health. In Québec, cooling towers and evaporative condensers are required to follow a maintenance and testing program to ensure L. pneumophila concentrations remain at acceptable levels. Objective: This study compared a new culture method based on the most probable number approach, Legiolert®, with the formal culture method used at EnvironeX for regulatory compliance testing to quantify L. pneumophila from cooling tower waters in Québec. Methods: A split-sample analysis was performed in which 401 samples from cooling towers in Québec were tested with both methods. Results: Results with 74 positive samples showed that Legiolert provided a significant increase in sensitivity for L. pneumophila compared with the agar plate method. Cooling tower samples often contain non-Legionella flora that necessitate multiple treatment and plating conditions to prevent interference with the test. Legiolert showed little to no impact from non-Legionella organisms in this study. Conclusions: Overall, Legiolert showed several advantages over the agar plate method, including increased sensitivity, reduced interference, a simplified test procedure, and an easy-to-read positive signal.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3