Combining dynamic and static host intrusion detection features using variational long short-term memory recurrent autoencoder

Author:

,Nguyen Viet Hung,Tran Nguyen Ngoc,

Abstract

Despite the many advantages offered by Host Intrusion Detection Systems (HIDS), they are rarely adopted in mainstream cybersecurity strategies. Unlike Network Intrusion Detection Systems, a HIDS is the last layer of defence between potential attacks and the underlying OSs. One of the main reasons behind this is its poor capabilities to adequately protect against zero-day attacks. With the rising number of zero-day exploits and related attacks, this is an increasingly imperative requirement for a modern HIDS. In this paper variational long short-term memory — recurrent autoencoder approach which improves zero-day attack detection is proposed. We have practically implemented our model using TensorFlow and evaluated its performance using benchmark ADFA-LD and UNM datasets. We have also compared the results against those from notable publications in the area.

Publisher

Saint Petersburg State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3