A general, resource‐based explanation for density dependence in populations of large herbivores

Author:

Hobbs N. Thompson1

Affiliation:

1. Natural Resource Ecology Laboratory, Department of Ecosystem Science and Sustainability, and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA

Abstract

AbstractThe discipline of ecology seeks to understand how ecosystems, communities, and populations are regulated. A ubiquitous mechanism of population regulation of consumers is that capturing energy and nutrients in sufficient quantities for survival and reproduction becomes more difficult as population density increases. Extensive evidence has revealed that populations of large herbivores are often regulated by density dependence, defined as the reduction in the per‐capita population growth rate that occurs as populations grow large. Diminished body mass of individuals has been repeatedly observed in high‐density populations, implicating compromised nutrition as the primary cause of density dependence. However, there is no general explanation for why these nutritional deficiencies occur. Recent work demonstrated that reduced food intake rates resulting from the functional response of herbivores to depleted plant biomass does not provide a sensible explanation for density dependence because rates of food intake of herbivores are often insensitive to changes in plant biomass. A new model of feedbacks from plant biomass to herbivores shows how reduced nutrition of herbivores can result from increased dilution of nutrients in the plant tissue they consume as populations grow, even when their rate of consumption of plants remains constant. The model contains parameters that can be scaled to body mass, allowing unusually general predictions. The model shows that convex, concave, and linear relationships between the per‐capita growth rate and population density can arise from the effects of depletion of plant biomass by herbivore foraging. The model is the first to explicitly include spatial variance in the nutritional quality of plants as a general driver of herbivore population dynamics. I show how regulation of herbivore abundance by plant nutrients can occur, even when a large fraction of the consumable plant biomass remains uneaten, providing a simple, mechanistic explanation for bottom‐up control of population dynamics of primary consumers in a “green world.”

Funder

National Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3