Everything You Want to Know About Coarse‐Graining and Never Dared to Ask: Macromolecules as a Key Example

Author:

Guenza Marina G.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry University of Oregon Eugene Oregon USA

Abstract

ABSTRACTCoarse‐graining (CG) is transforming the study of molecular systems, allowing researchers to explore by computer simulations larger and more complex structures than ever before. Continued advancements in CG techniques are making simulations more efficient, establishing this approach as a cornerstone for designing innovative materials and eco‐friendly alternatives to traditional plastics. Additionally, CG methods are becoming indispensable for unraveling the complexities and functional mechanisms of large‐scale macromolecular machines within cells. Yet, crafting an effective coarse‐grained model demands a nuanced understanding of its advantages and limitations. Faster simulations come at the cost of molecular detail and accuracy in some properties, so that it is essential to balance computational efficiency with the specific needs of the system one wants to simulate. By asking the right questions, researchers can select models that offer the desired benefits while managing trade‐offs. This article delves into the potential of different CG models and the compromises inherent in their adoption, highlighting their role in shaping the future of material science and biophysics.

Funder

National Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3