The generalized residual cutting method and its convergence characteristics

Author:

Abe T.1,Chronopoulos A. T.23

Affiliation:

1. Cyber AI Entertainment, Inc. Tokyo Japan

2. Department of Computer Science The University of Texas at San Antonio San Antonio Texas USA

3. Department of Computer Engineering & Informatics University of Patras Rio Greece

Abstract

AbstractIterative methods and especially Krylov subspace methods (KSM) are a very useful numerical tool in solving for large and sparse linear systems problems arising in science and engineering modeling. More recently, the nested loop KSM have been proposed that improve the convergence of the traditional KSM. In this article, we review the residual cutting (RC) and the generalized residual cutting (GRC) that are nested loop methods for large and sparse linear systems problems. We also show that GRC is a KSM that is equivalent to Orthomin with a variable preconditioning. We use the modified Gram–Schmidt method to derive a stable GRC algorithm. We show that GRC presents a general framework for constructing a class of “hybrid” (nested) KSM based on inner loop method selection. We conduct numerical experiments using nonsymmetric indefinite matrices from a widely used library of sparse matrices that validate the efficiency and the robustness of the proposed methods.

Publisher

Wiley

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3