Mechanism of epithelial‐mesenchymal transition in cancer and its regulation by natural compounds

Author:

Ang Hui Li1,Mohan Chakrabhavi Dhananjaya2,Shanmugam Muthu K.1,Leong Hin Chong1,Makvandi Pooyan3,Rangappa Kanchugarakoppal S.4ORCID,Bishayee Anupam5ORCID,Kumar Alan Prem16ORCID,Sethi Gautam16ORCID

Affiliation:

1. Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore

2. Department of Studies in Molecular Biology University of Mysore, Manasagangotri Mysore Karnataka India

3. Istituto Italiano di Tecnologia Centre for Materials Interface Pontedera Pisa Italy

4. Institution of Excellence, Vijnana Bhavan University of Mysore, Manasagangotri Mysore India

5. College of Osteopathic Medicine Lake Erie College of Osteopathic Medicine Bradenton Florida USA

6. NUS Center for Cancer Research, Yong Loo Lin School of Medicine National University of Singapore Singapore

Abstract

AbstractEpithelial‐mesenchymal transition (EMT) is a complex process with a primordial role in cellular transformation whereby an epithelial cell transforms and acquires a mesenchymal phenotype. This transformation plays a pivotal role in tumor progression and self‐renewal, and exacerbates resistance to apoptosis and chemotherapy. EMT can be initiated and promoted by deregulated oncogenic signaling pathways, hypoxia, and cells in the tumor microenvironment, resulting in a loss‐of‐epithelial cell polarity, cell–cell adhesion, and enhanced invasive/migratory properties. Numerous transcriptional regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2 induce EMT through the downregulation of epithelial markers and gain‐of‐expression of the mesenchymal markers. Additionally, signaling cascades such as Wnt/β‐catenin, Notch, Sonic hedgehog, nuclear factor kappa B, receptor tyrosine kinases, PI3K/AKT/mTOR, Hippo, and transforming growth factor‐β pathways regulate EMT whereas they are often deregulated in cancers leading to aberrant EMT. Furthermore, noncoding RNAs, tumor‐derived exosomes, and epigenetic alterations are also involved in the modulation of EMT. Therefore, the regulation of EMT is a vital strategy to control the aggressive metastatic characteristics of tumor cells. Despite the vast amount of preclinical data on EMT in cancer progression, there is a lack of clinical translation at the therapeutic level. In this review, we have discussed thoroughly the role of the aforementioned transcription factors, noncoding RNAs (microRNAs, long noncoding RNA, circular RNA), signaling pathways, epigenetic modifications, and tumor‐derived exosomes in the regulation of EMT in cancers. We have also emphasized the contribution of EMT to drug resistance and possible therapeutic interventions using plant‐derived natural products, their semi‐synthetic derivatives, and nano‐formulations that are described as promising EMT blockers.

Publisher

Wiley

Subject

Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3