Recent progress and structural analyses of domain‐selective BET inhibitors

Author:

Divakaran Anand1ORCID,Harki Daniel A.12ORCID,Pomerantz William C. K.12ORCID

Affiliation:

1. Department of Medicinal Chemistry University of Minnesota Minneapolis Minnesota USA

2. Department of Chemistry University of Minnesota Minneapolis Minnesota USA

Abstract

AbstractEpigenetic mechanisms for controlling gene expression through heritable modifications to DNA, RNA, and proteins, are essential processes in maintaining cellular homeostasis. As a result of their central role in human diseases, the proteins responsible for adding, removing, or recognizing epigenetic modifications have emerged as viable drug targets. In the case of lysine‐ε‐N‐acetylation (Kac), bromodomains serve as recognition modules (“readers”) of this activating epigenetic mark and competition of the bromodomain‐Kac interaction with small‐molecule inhibitors is an attractive strategy to control aberrant bromodomain‐mediated gene expression. The bromodomain and extra‐terminal (BET) family proteins contain eight similar bromodomains. These BET bromodomains are among the more commonly studied bromodomain classes with numerous pan‐BET inhibitors showing promising anticancer and anti‐inflammatory efficacy. However, these results have yet to translate into Food and Drug Administration‐approved drugs, in part due to a high degree of on‐target toxicities associated with pan‐BET inhibition. Improved selectivity within the BET‐family has been proposed to alleviate these concerns. In this review, we analyze the reported BET‐domain selective inhibitors from a structural perspective. We highlight three essential characteristics of the reported molecules in generating domain selectivity, binding affinity, and mimicking Kac molecular recognition. In several cases, we provide insight into the design of molecules with improved specificity for individual BET‐bromodomains. This review provides a perspective on the current state of the field as this exciting class of inhibitors continue to be evaluated in the clinic.

Publisher

Wiley

Subject

Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3