Considerations in Bayesian agent‐based modeling for the analysis of COVID‐19 data

Author:

Um Seungha1ORCID,Adhikari Samrachana1ORCID

Affiliation:

1. Division of Biostatistics, Department of Population Health New York University Grossman School of Medicine New York New York USA

Abstract

AbstractAgent‐based model (ABM) has been widely used to study infectious disease transmission by simulating behaviors and interactions of autonomous individuals called agents. In the ABM, agent states, for example infected or susceptible, are assigned according to a set of simple rules, and a complex dynamics of disease transmission is described by the collective states of agents over time. Despite the flexibility in real‐world modeling, ABMs have received less attention by statisticians because of the intractable likelihood functions which lead to difficulty in estimating parameters and quantifying uncertainty around model outputs. To overcome this limitation, a Bayesian framework that treats the entire ABM as a Hidden Markov Model has been previously proposed. However, existing approach is limited due to computational inefficiency and unidentifiability of parameters. We extend the ABM approach within Bayesian framework to study infectious disease transmission addressing these limitations. We estimate the hidden states, represented by individual agent's states over time, and the model parameters by applying an improved particle Markov Chain Monte Carlo algorithm, that accounts for computing efficiency. We further evaluate the performance of the approach for parameter recovery and prediction, along with sensitivity to prior assumptions under various simulation conditions. Finally, we apply the proposed approach to the study of COVID‐19 outbreak on Diamond Princess cruise ship. We examine the differences in transmission by key demographic characteristics, while considering two different networks and limited COVID‐19 testing in the cruise.

Publisher

Wiley

Subject

Computer Science Applications,Information Systems,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3