Coculture of Human Embryonic Stem Cells and Human Articular Chondrocytes Results in Significantly Altered Phenotype and Improved Chondrogenic Differentiation

Author:

Bigdeli Narmin1,Karlsson Camilla1,Strehl Raimund2,Concaro Sebastian1,Hyllner Johan2,Lindahl Anders1

Affiliation:

1. Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden

2. Cellartis AB, Gothenburg, Sweden

Abstract

Abstract Human embryonic stem (hES) cells have been suggested as a cell source for the repair of cartilage lesions. Here we studied how coculture with human articular chondrocytes affects the expansion potential, morphology, expression of surface markers, and differentiation abilities of hES cells, with special regard to chondrogenic differentiation. Undifferentiated hES cells were cocultured with irradiated neonatal or adult articular chondrocytes in high-density pellet mass cultures for 14 days. Cocultured hES cells were then expanded on plastic and their differentiation potential toward the adipogenic, osteogenic, and chondrogenic lineages was compared with that of undifferentiated hES cells. The expression of different surface markers was investigated using flow cytometry and teratoma formation was studied using injection of the cells under the kidney capsule. Our results demonstrate that although hES cells have to be grown on Matrigel, the cocultured hES cells could be massively expanded on plastic with a morphology and expression of surface markers similar to mesenchymal stem cells. Coculture further resulted in a more homogenous pellet and significantly increased cartilage matrix production, both in high-density pellet mass cultures and hyaluronan-based scaffolds. Moreover, cocultured cells formed colonies in agarose suspension culture, also demonstrating differentiation toward chondroprogenitor cells, whereas no colonies were detected in the hES cell cultures. Coculture further resulted in a significantly decreased osteogenic potential. No teratoma formation was detected. Our results confirm the potential of the culture microenvironment to influence hES cell morphology, expansion potential, and differentiation abilities over several population doublings. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3