Dynamic borrowing of historical controls adjusting for covariates in vaccine efficacy clinical trials

Author:

Callegaro Andrea1ORCID,Luo Yongyi2ORCID,Karkada Naveen1,Zahaf Toufik1

Affiliation:

1. Department of Biostatistics GSK Rixensart Belgium

2. Institute of Mathematics Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne Switzerland

Abstract

AbstractTraditional vaccine efficacy trials usually use fixed designs and often require large sample sizes. Recruiting a large number of subjects can make the trial expensive, long, and difficult to conduct. A possible approach to reduce the sample size and speed up the development is to use historical controls. In this paper, we extend the robust mixture prior (RMP) approach (a well established approach for Bayesian dynamic borrowing of historical controls) to adjust for covariates. The adjustment is done using classical methods from causal inference: inverse probability of treatment weighting, G‐computation and double‐robust estimation. We evaluate these covariate‐adjusted RMP approaches using a comprehensive simulation study and demonstrate their use by performing a retrospective analysis of a prophylactic human papillomavirus vaccine efficacy trial. Adjusting for covariates reduces the drift between current and historical controls, with a beneficial effect on bias, control of type I error and power.

Funder

GlaxoSmithKline Biologicals

Publisher

Wiley

Reference36 articles.

1. The combination of randomized and historical controls in clinical trials;Pocock SJ;J Chron Dis,1976

2. Power prior distributions for regression models;Ibrahim JG;Statistical Science,2000

3. Evaluating water quality using power priors to incorporate historical data;Duan Y;Environ,2006

4. A note on the power prior;Neuenschwander B;Stat Med,2009

5. Summarizing historical data on controls in clinical trials;Neuenschwander B;Clin Trial,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3