In‐frame deletion of SMC5 related with the phenotype of primordial dwarfism, chromosomal instability and insulin resistance

Author:

Zhu Wenjiao1,Shi Yuanping1,Zhang Changrun1,Peng Yajie1,Wan Yueyue2,Xu Yue1,Liu Xuemeng1,Han Bing1,Zhao Shuangxia2,Kuang Yanping3,Song Huaidong2,Qiao Jie1ORCID

Affiliation:

1. Department of Endocrinology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China

2. Department of Molecular Diagnostics & Endocrinology The Core Laboratory in Medical Center of Clinical Research Shanghai Ninth People's Hospital State Key Laboratory of Medical Genomics Shanghai Jiao Tong University School of Medicine Shanghai China

3. Department of Assisted Reproduction Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China

Abstract

AbstractBackgroundSMC5/6 complex plays a vital role in maintaining genome stability, yet the relationship with human diseases has not been described.MethodsSMC5 variation was identified through whole‐exome sequencing (WES) and verified by Sanger sequencing. Immunoprecipitation, cytogenetic analysis, fluorescence activated cell sorting (FACS) and electron microscopy were used to elucidate the cellular consequences of patient's cells. smc5 knockout (KO) zebrafish and Smc5K371del knock‐in mouse models were generated by CRISPR‐Cas9. RNA‐seq, quantitative real‐time PCR (qPCR), western blot, microquantitative computed tomography (microCT) and histology were used to explore phenotypic characteristics and potential mechanisms of the animal models. The effects of Smc5 knockdown on mitotic clonal expansion (MCE) during adipogenesis were investigated through Oil Red O staining, proliferation and apoptosis assays in vitro.ResultsWe identified a homozygous in‐frame deletion of Arg372 in SMC5, one of the core subunits of the SMC5/6 complex, from an adult patient with microcephalic primordial dwarfism, chromosomal instability and insulin resistance. SMC5 mutation disrupted its interaction with its interacting protein NSMCE2, leading to defects in DNA repair and chromosomal instability in patient fibroblasts. Smc5 KO zebrafish showed microcephaly, short length and disturbed glucose metabolism. Smc5 depletion triggers a p53‐related apoptosis, as concomitant deletion of the p53 rescued growth defects phenotype in zebrafish. An smc5K371del knock‐in mouse model exhibited high mortality, severe growth restriction and fat loss. In 3T3‐L1 cells, the knockdown of smc5 results in impaired MCE, a crucial step in adipogenesis. This finding implies that defective cell survival and differentiation is an important mechanism linking growth disorders and metabolic homeostasis imbalance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3