Promotive role of eukaryotic translation initiation factor 4A isoform 3 in ovarian cancer cell growth and aerobic glycolysis through the pyruvate dehydrogenase kinase 4 signaling

Author:

Bai Sha‐Sha1,Yan Li‐Wei1,Liu Chun‐Hui1ORCID

Affiliation:

1. Department of Gynaecology Affiliated Hospital of Hebei University Baoding China

Abstract

AbstractOvarian cancer (OC) represents one of the most detrimental gynecological malignancies. RNA‐binding protein eukaryotic translation initiation factor 4A isoform 3 (EIF4A3) is well‐regarded as a definitive oncogene that contributes to the development of multiple malignant tumors. This study sought to elucidate the molecular mechanism of EIF4A3 in OC growth and aerobic glycolysis by regulation of pyruvate dehydrogenase kinase 4 (PDK4) mRNA stability. We determined the EIF4A3 and PDK4 expression levels in OC cell lines and normal ovarian epithelial cells, and subsequently evaluated the cell viability and colony formation by cell counting kit‐8 and colony formation assays. The degree of cell aerobic glycolysis was evaluated by measurements of lactic acid production, glucose intake, adenosine triphosphate level, extracellular oxygen consumption, and protein levels of pyruvate kinase isozymes M2 and hexokinase‐2. Afterwards, we verified the binding of EIF4A3 and PDK4 mRNA via RNA immunoprecipitation, and determined the mRNA stability after actinomycin D treatment. Finally, a series of rescue experiments was performed with pcDNA3.1‐PDK4. EIF4A3 and PDK4 were upregulated in OC cells. Silencing EIF4A3 obstructed cell proliferation and aerobic glycolysis, while the same was annulled by EIF4A3 overexpression. Mechanically, EIF4A3 could bind to PDK4 mRNA to stabilize its mRNA and upregulate its protein levels. PDK4 overexpression inverted the inhibitory role of silencing EIF4A3 in proliferation and aerobic glycolysis. Overall, our findings highlighted that EIF4A3 induced OC progression by stabilizing PDK4 mRNA.

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3