Uracil hydrazones: design, synthesis, antimicrobial activities, and putative mode of action

Author:

Zhou Huan1ORCID,Li Qing X2,Zeng Lei1,Cao Congwang1,Zhang Tuotuo1,Zhou Yuan1ORCID,He Hongwu1ORCID

Affiliation:

1. Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry Central China Normal University Wuhan China

2. Department of Molecular Biosciences and Bioengineering University of Hawaii at Manoa Honolulu HI USA

Abstract

AbstractBACKGROUNDCrop diseases caused by plant pathogenic fungi and bacteria have led to substantial losses in global food production. Chemical pesticides have been widely used as a primary means to mitigate these issues. Nevertheless, the persistent and excessive use of pesticides has resulted in the emergence of microbial resistance. Moreover, the improper application and excessive utilization of pesticides can contribute to environmental pollution and the persistence of pesticide residues. Consequently, the development of novel and highly effective bactericides and fungicides to combat plant pathogens holds immense practical importance.RESULTSA series of uracil hydrazones IV‐B was deliberately designed and evaluated for their antimicrobial efficacy. The results of bioassays indicated that most IV‐B exhibited >80% inhibition against the fungal species Monilia fructigena and Sclerotium rolfsii, as well as the bacterial species Clavibacter michiganensis subsp. michiganensis, Xanthomonas oryzae pv. oryzae, and Ralstonia solanacearum, at 50 μg/mL in vitro. In vivo, IV‐B20 showed 89.9% of curative and 71.8% of protective activities against C. michiganensis subsp. michiganensis at 100 μg/mL superior to thiodiazole copper and copper hydroxide. IV‐B20 also showed excellent protective activity against M. fructigena (96.3% at 200 μg/mL) and S. rolfsii (80.4% at 1000 μg/mL), which were greater than chlorothalonil and equivalent to thifluzamide. Mechanistic studies revealed that IV‐B20 induced oxidative damage in pathogenic bacteria and promoted the leakage of cellular contents.CONCLUSIONThis study suggests that IV‐B20 with uracil hydrazone skeleton has great potential as an antimicrobial candidate. These findings lay a foundation for practical application in agriculture. © 2023 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

U.S. Department of Agriculture

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3