Microkinetic analysis of the CO2 effect on OCM over a La‐Sr/CaO catalyst

Author:

Cheng Yonggang1,Mendes Pedro S. F.1,Yazdani Parviz1,Thybaut Joris W.1

Affiliation:

1. Laboratory for Chemical Technology Ghent University Ghent Belgium

Abstract

AbstractGiven its role as a primary side product and a potential soft oxidant in the oxidative coupling of methane (OCM), understanding the effect of CO2 co‐feeding on OCM emerges as a key milestone to optimize the process. To grasp the molecular impact of CO2, a mechanistic investigation over a La‐Sr/CaO catalyst was carried out via microkinetic modeling. Seven catalyst descriptors with a precise physico‐chemical meaning were regressed for both pure O2 and CO2 co‐feeding in order to assess eventual structural changes induced in the catalyst by the presence of CO2 in the feed. Global significance was achieved in both regressions and experimental trends were successfully reproduced by the specifically determined catalyst descriptors. CO2 co‐feeding is deemed responsible for generating a new active phase, for example, by converting metal oxides into (oxy‐)carbonates, among others, resulting in a decrease in active site density (D16) from 10 × 10−5 mol/m2 to 7 × 10−5 mol/m2. In the presence of the CO2‐induced phase, the catalyst exhibits higher attraction for unsaturated hydrocarbons as indicated by the higher initial sticking probabilities of CH3• (D11) and C2H4 (D15), which increase from 4.9 × 10−4 to 8 × 10−2 and from 2.1 × 10−2 to 3 × 10−2, respectively. Additionally, there are also lower the overall energy barriers for the activation of hydrocarbons on the catalyst, stemming from the decrease in the H abstraction enthalpy from CH4 (D1) from 14 to 6 kJ/mol. The operating conditions, in particular the O2 content, are critical in distinguishing the effect of CO2 co‐feeding. While at typical operating conditions, CO2 promotes the total oxidation of methane, in the prerequisite of reduced amount of O2, it may also act as an additional oxygen donor. This work provides molecular details on the CO2 induced changes in catalyst properties but also provides unprecedent quantified insights of the reaction mechanism underlying experimental observations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3