Genomic analyses of an Escherichia coli and Klebsiella pneumoniae urinary tract co‐infection using long‐read nanopore sequencing

Author:

Fordham Stephen Mark Edward1ORCID,Barrow Magdalena1,Mantzouratou Anna1,Sheridan Elizabeth2

Affiliation:

1. Department of Life & Environmental Sciences, Talbot Campus Fern Barrow Bournemouth University Poole UK

2. Department of Medical Microbiology, Poole Hospital University Hospitals Dorset NHS Foundation Trust Poole England

Abstract

AbstractEscherichia coli and Klebsiella pneumoniae isolates presenting with the same antimicrobial susceptibility profile were recovered from the same catheter sample of urine (CSU). Both strains were recovered from a patient with a long‐standing indwelling urinary catheter. Each isolate had its DNA extracted following culture. Nanopore long‐read sequencing was used to build the plasmids and chromosomes from each strain to closure to discern the potential horizontal propagation of resistance‐encoding plasmids and the relationship between resistance genes and insertion sequences. Plasmids derived from resistance strains in the urinary microbiota remain poorly characterized. The same 11 antimicrobial resistance (AMR) genes were found in plasmids from each strain. The 185,239‐bp FIB(K) pKBM1, from the K. pneumoniae strain, additionally encoded the five AMR genes: sul2, strA, strB, blaTEM‐1B, and blaCTX‐M‐15. A multimeric array of AMR genes and IS26 insertion sequences were found in the plasmids from both isolates. Both plasmids from each isolate were similar. Horizontal transfer of plasmids, followed by subsequent plasmid rearrangement, is likely to have occurred during infection. Furthermore, the resistance region in the plasmids shared similarity against the internationally prevalent plasmid, pKPN3‐307_typeA, commonly identified in K. pneumoniae ST307. Biofilm formation in catheterized patients may allow close cell contact between strains. Horizontal propagation of resistance genes may occur, leading to polymicrobial infections.

Funder

Pfizer

Publisher

Wiley

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3