Theory‐guided machine learning for optimal autoclave co‐curing of sandwich composite structures

Author:

Lavaggi Tania1,Samizadeh Mina2,Niknafs Kermani Navid1,Khalili Mohammad Mahdi2,Advani Suresh G.1ORCID

Affiliation:

1. Center for Composite Materials and Department of Mechanical Engineering University of Delaware Newark Delaware USA

2. Department of Computer and Information Sciences University of Delaware Newark Delaware USA

Abstract

AbstractThe bonding of a honeycomb core to the thermoset prepreg facesheets by co‐curing them allows one to manufacture composite sandwich structures in a single operation. However, the process is strongly dependent on the prescribed autoclave cure cycle. A previously developed physics‐based simulation can predict the bond quality as a function of the process parameters. The disadvantage of physics‐based simulations is the high computational effort needed to identify the optimal cure cycle to fabricate sandwich structures with desired bond‐line properties. Theory guided machine learning (TGML) methods have demonstrated their capabilities to reduce the computational effort for different applications. In this work, three TGML models are trained on a data set produced from physics‐based simulations to predict the co‐cure process of honeycomb sandwich structures. The accuracy of the TGML models were compared to select the best performing predictive tool. In addition to reduction of computational time by orders of magnitude, we demonstrate how the TGML tools can also quantify the contribution of each process parameter on the properties of the fabricated part. The most accurate model was implemented in an optimization routine to tune the input process parameters to obtain the desired properties such as the bond‐line porosity and facesheet consolidation level. This methodology could be extended to any process simulation of composites manufacturing processes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3