Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence

Author:

Paredis Simon123,Cardeynaels Tom1234,Kuila Suman5,Deckers Jasper123,Van Landeghem Melissa23,Vandewal Koen23,Danos Andrew5,Monkman Andrew P.5,Champagne Benoît4,Maes Wouter123

Affiliation:

1. Design & Synthesis of Organic Semiconductors (DSOS) Institute for Materials Research (IMO-IMOMEC) Hasselt University Agoralaan 1 3590 Diepenbeek Belgium

2. IMOMEC Division IMEC Wetenschapspark 1 3590 Diepenbeek Belgium

3. Energyville Thorpark 3600 Genk Belgium

4. Laboratory of Theoretical Chemistry Theoretical and Structural Physical Chemistry Unit Namur Institute of Structured Matter University of Namur Rue de Bruxelles 61 5000 Namur Belgium

5. OEM group, Department of Physics Durham University South Road Durham DH1 3LE UK

Abstract

AbstractMetal‐free organic emitters that display solution‐phase room temperature phosphorescence (sRTP) remain exceedingly rare. Here, we investigate the structural and photophysical properties that support sRTP by comparing a recently reported sRTP compound (BTaz−Th−PXZ) to two novel analogous materials, replacing the donor group by either acridine or phenothiazine. The emissive triplet excited state remains fixed in all three cases, while the emissive charge‐transfer singlet states (and the calculated paired charge‐transfer T2 state) vary with the donor unit. While all three materials show dominant RTP in film, in solution different singlet‐triplet and triplet‐triplet energy gaps give rise to triplet‐triplet annihilation followed by weak sRTP for the new compounds, compared to dominant sRTP throughout for the original PXZ material. Engineering both the sRTP state and higher charge‐transfer states therefore emerges as a crucial element in designing emitters capable of sRTP.

Funder

Engineering and Physical Sciences Research Council

Gouvernement Wallon

Université de Namur

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3