Stabilizing Nitroxide Spin Labels for Structural and Conformational Studies of Biomolecules by Maleimide Treatment

Author:

Wang Xi‐Wei1,Zhang Xing1,Cui Chao‐Yu1,Li Bin1,Goldfarb Daniella2,Yang Yin1,Su Xun‐Cheng1ORCID

Affiliation:

1. State Key Laboratory of Elemento-organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry Nankai University Tianjin 300071 China

2. Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot 76100 Israel

Abstract

AbstractNitroxide (NO) spin radicals are effective in characterizing structures, interactions and dynamics of biomolecules. The EPR applications in cell lysates or intracellular milieu require stable spin labels, but NO radicals are unstable in such conditions. We showed that the destabilization of NO radicals in cell lysates or even in cells is caused by NADPH/NADH related enzymes, but not by the commonly believed reducing reagents such as GSH. Maleimide stabilizes the NO radicals in the cell lysates by consumption of the NADPH/NADH that are essential for the enzymes involved in destabilizing NO radicals, instead of serving as the solo thiol scavenger. The maleimide treatment retains the crowding properties of the intracellular components and allows to perform long‐time EPR measurements of NO labeled biomolecules close to the intracellular conditions. The strategy of maleimide treatment on cell lysates for the EPR applications has been demonstrated on double electron‐electron resonance (DEER) measurements on a number of NO labeled protein samples. The method opens a broad application range for the NO labeled biomolecules by EPR in conditions that resemble the intracellular milieu.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3