Toward atomistic models of intact severe acute respiratory syndrome coronavirus 2 via Martini coarse‐grained molecular dynamics simulations

Author:

Wang Dali12,Li Jiaxuan1,Wang Lei1,Cao Yipeng34,Kang Bo4,Meng Xiangfei4,Li Sai25,Song Chen12

Affiliation:

1. Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University Beijing China

2. Peking‐Tsinghua Center for Life Sciences Beijing China

3. Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer Tianjin China

4. National Supercomputer Center in Tianjin Tianjin China

5. Beijing Frontier Research Center for Biological Structure State Key Laboratory of Membrane Biology School of Life Sciences Tsinghua University Beijing China

Abstract

AbstractThe causative pathogen of coronavirus disease 2019 (COVID‐19), severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is an enveloped virus assembled by a lipid envelope and multiple structural proteins. In this study, by integrating experimental data, structural modeling, as well as coarse‐grained and all‐atom molecular dynamics simulations, we constructed multiscale models of SARS‐CoV‐2. Our 500‐ns coarse‐grained simulation of the intact virion allowed us to investigate the dynamic behavior of the membrane‐embedded proteins and the surrounding lipid molecules in situ. Our results indicated that the membrane‐embedded proteins are highly dynamic, and certain types of lipids exhibit various binding preferences to specific sites of the membrane‐embedded proteins. The equilibrated virion model was transformed into atomic resolution, which provided a 3D structure for scientific demonstration and can serve as a framework for future exascale all‐atom molecular dynamics (MD) simulations. A short all‐atom molecular dynamics simulation of 255 ps was conducted as a preliminary test for large‐scale simulations of this complex system.

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Martini on the Rocks: Can a Coarse-Grained Force Field Model Crystals?;The Journal of Physical Chemistry Letters;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3