Repurposing iron chelators for accurate positron emission tomography imaging tracking of radiometal‐labeled cell transplants

Author:

Xu Qian12,Wang Xinyu12,Mu Ziqian12,Zhou Yixiang12,Ding Xiang12,Ji Xin2,Yan Junjie12,Pan Donghui2,Chen Chongyang2,Xu Yuping12,Wang Lizhen2,Wang Jing3,Wang Guangji4,Yang Min12

Affiliation:

1. Department of Radiopharmaceuticals School of Pharmacy Nanjing Medical University Nanjing China

2. NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi China

3. Jiangsu Renocell Biotech Co., Ltd. Nanjing China

4. Key Laboratory of Drug Metabolism and Pharmacokinetics State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing China

Abstract

AbstractThe use of radiolabeled cells for positron emission tomography (PET) imaging tracking has been a promising approach for monitoring cell‐based therapies. However, the presence of free radionuclides released from dead cells during tracking can interfere with the signal from living cells, leading to inaccurate results. In this study, the effectiveness of the iron chelators deferoxamine (DFO) and deferiprone in removing free radionuclides 89Zr and 68Ga, respectively, was demonstrated in vivo utilizing PET imaging. The use of DFO during PET imaging tracking of 89Zr‐labeled mesenchymal stem cells (MSCs) significantly reduced uptake in bone while preserving uptake in major organs, resulting in more accurate and reliable tracking. Furthermore, the clearance of free 89Zr in vivo resulted in a significant reduction in radiation dose from 89Zr‐labeled MSCs. Additionally, the avoidance of free radionuclide accumulation in bone allowed for more precise observation of the homing process and persistence during bone marrow transplantation. The efficacy and safety of this solution suggest this finding has potential for widespread use in imaging tracking studies involving various cells. Moreover, since this method employed iron chelator drugs in clinical use, which makes it is a good prospect for clinical translation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Biochemistry (medical),Genetics (clinical),Computer Science Applications,Drug Discovery,Genetics,Oncology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3