Rapid, repeatable landscape‐scale mapping of tree, hedgerow, and woodland habitats (THaW), using airborne LiDAR and spaceborne SAR data

Author:

Luscombe David J.1ORCID,Gatis Naomi1,Anderson Karen2,Carless Donna1,Brazier Richard E.1

Affiliation:

1. Centre for Resilience in Environment, Water and Waste (CREWW) Faculty of Environment, Science and Economy University of Exeter Exeter UK

2. Environment and Sustainability Institute University of Exeter Penryn UK

Abstract

AbstractIn the UK, tree, hedgerow, and woodland (THaW) habitats are key havens for biodiversity and support many related ecosystem services. The UK is entering a period of agricultural policy realignment with respect to natural capital and climate change, meaning that now is a critical time to evaluate the distribution, resilience, and dynamics of THaW habitats. The fine‐grained nature of habitats like hedgerows necessitates mapping of these features at relatively fine spatial resolution—and freely available public archives of airborne laser scanning (LiDAR) data at <2 m spatial resolution offer a means of doing so within UK settings. The high cost of LiDAR prohibits use for regular monitoring of THaW change, but space‐borne sensors such as Sentinel‐1 Synthetic Aperture Radar (SAR at ca. 10 m resolution) can potentially meet this need once baseline distributions are established. We address two aims in this manuscript—(1) to rapidly quantify THaW across UK landscapes using LiDAR data and (2) to monitor canopy change intra‐ and inter‐annually using SAR data. We show that workflows applied to airborne LiDAR data can deliver THaW baselines at 2 m resolution, with positional accuracy of >90%. It was also possible to combine LiDAR mapping data and Sentinel‐1 SAR data to rapidly track canopy change through time (i.e., every 3 months) using, cloud‐based processing via Google Earth Engine. The resultant toolkit is also provided as an open‐access web app. The results highlight that whilst nearly 90% of the tallest trees (above 15 m) are captured within the National Forest Inventory (NFI) database only 50% of THaW with a canopy height range of 3–15 m are recorded. Current estimates of tree distribution neglect these finer‐grained features (i.e., smaller or less contiguous THaW canopies), which we argue will account for a significant proportion of landscape THaW cover.

Funder

Natural Environment Research Council

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3