A stable, highly concentrated fluorous nanoemulsion formulation for in vivo cancer imaging via 19F‐MRI

Author:

Heaton Alexa R.1ORCID,Lechuga Lawrence M.2ORCID,Tangsangasaksri Montira3,Ludwig Kai D.2,Fain Sean B.24,Mecozzi Sandro13ORCID

Affiliation:

1. Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin USA

2. Department of Medical Physics University of Wisconsin‐Madison Madison Wisconsin USA

3. School of Pharmacy University of Wisconsin‐Madison Madison Wisconsin USA

4. Department of Radiology University of Iowa Iowa City Iowa USA

Abstract

AbstractMagnetic resonance imaging (MRI) is a routine diagnostic modality in oncology that produces excellent imaging resolution and tumor contrast without the use of ionizing radiation. However, improved contrast agents are still needed to further increase detection sensitivity and avoid toxicity/allergic reactions associated with paramagnetic metal contrast agents, which may be seen in a small percentage of the human population. Fluorine‐19 (19F)‐MRI is at the forefront of the developing MRI methodologies due to near‐zero background signal, high natural abundance of 100%, and unambiguous signal specificity. In this study, we have developed a colloidal nanoemulsion (NE) formulation that can encapsulate high volumes of the fluorous MRI tracer, perfluoro‐[15‐crown‐5]‐ether (PFCE) (35% v/v). These nanoparticles exhibit long‐term (at least 100 days) stability and high PFCE loading capacity in formulation with our semifluorinated triblock copolymer, M2F8H18. With sizes of approximately 200 nm, these NEs enable in vivo delivery and passive targeting to tumors. Our diagnostic formulation, M2F8H18/PFCE NE, yielded in vivo 19F‐MR images with a high signal‐to‐noise ratio up to 100 in a tumor‐bearing mouse model at clinically relevant scan times. M2F8H18/PFCE NE circulated stably in the vasculature, accumulated in high concentration of an estimated 4–9 × 1017 19F spins/voxel at the tumor site, and cleared from most organs over the span of 2 weeks. Uptake by the mononuclear phagocyte system to the liver and spleen was also observed, most likely due to particle size. These promising results suggest that M2F8H18/PFCE NE is a favorable 19F‐MR diagnostic tracer for further development in oncological studies and potential clinical translation.

Funder

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Spectroscopy,Radiology, Nuclear Medicine and imaging,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3