Amino Acid Polymerization on Silica Surfaces

Author:

Samrout Ola El1ORCID,Berlier Gloria1ORCID,Lambert Jean‐François2ORCID

Affiliation:

1. Department of Chemistry University of Torino Via P. Giuria 7 10125 Torino Italy

2. Laboratoire de Réactivité de Surface, LRS Sorbonne Université Place Jussieu 75005 Paris France

Abstract

AbstractThe polymerization of unactivated amino acids (AAs) is an important topic because of its applications in various fields including industrial medicinal chemistry and prebiotic chemistry. Silica as a promoter for this reaction, is of great interest owing to its large abundance and low cost. The amide/peptide bond synthesis on silica has been largely demonstrated but suffers from a lack of knowledge regarding its reaction mechanism, the key parameters, and surface features that influence AA adsorption and reactivity, the selectivity of the reaction product, the role of water in the reaction, etc. The present review addresses these problems by summarizing experimental and modeling results from the literature and attempts to rationalize some apparent divergences in published results. After briefly presenting the main types of silica surface sites and other relevant macroscopic features, we discuss the different deposition procedures of AAs, whose importance is often neglected. We address the possible AA adsorption mechanisms including covalent grafting and H‐bonding and show that they are highly dependent on silanol types and density. We then consider how the adsorption mechanisms determine the occurrence and outcome of AA condensation (formation of cyclic dimers or of long linear chains), and outline some recent results that suggest significant polymerization selectivity in systems containing several AAs, as well as the formation of specific elements of secondary structure in the growing polypeptide chains.

Publisher

Wiley

Subject

General Chemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3