Covalent bonding of N‐hydroxyphthalimide on mesoporous silica for catalytic aerobic oxidation of p‐xylene at atmospheric pressure

Author:

Berniak Tomasz1,Łątka Piotr1,Drozdek Marek1,Rokicińska Anna1,Jaworski Aleksander2,Leyva‐Pérez Antonio3,Kuśtrowski Piotr1

Affiliation:

1. Department of Chemical Technology Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland

2. Department of Materials and Environmental Chemistry Stockholm University Stockholm SE-106 91 Sweden

3. Instituto de Tecnología Química (UPV – CSIC) Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n Valencia 46022 Spain

Abstract

AbstractThe surface of SBA‐15 mesoporous silica was modified by N‐hydroxyphthalimide (NHPI) moieties acting as immobilized active species for aerobic oxidation of alkylaromatic hydrocarbons. The incorporation was carried out by four original approaches: the grafting‐from and grafting‐onto techniques, using the presence of surface silanols enabling the formation of particularly stable O−Si−C bonds between the silica support and the organic modifier. The strategies involving the Heck coupling led to the formation of NHPI groups separated from the SiO2 surface by a vinyl linker, while one of the developed modification paths based on the grafting of an appropriate organosilane coupling agent resulted in the active phase devoid of this structural element. The successful course of the synthesis was verified by FTIR and 1H NMR measurements. Furthermore, the formed materials were examined in terms of their chemical composition (elemental analysis, thermal analysis), structure of surface groups (13C NMR, XPS), porosity (low‐temperature N2 adsorption), and tested as catalysts in the aerobic oxidation of p‐xylene at atmospheric pressure. The highest conversion and selectivity to p‐toluic acid were achieved using the catalyst with enhanced availability of non‐hydrolyzed NHPI groups in the pore system. The catalytic stability of the material was additionally confirmed in several subsequent reaction cycles.

Funder

European Regional Development Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3