Does Larger Cavity‐Size Really Help Bigger Anions to Bind? A Scrutiny on Core‐Expanded Calix[4]pyrroles and Their Properties

Author:

Giri Monalisa1,Dash Yashaswini1,Guchhait Tapas1ORCID

Affiliation:

1. Department of Chemistry C. V. Raman Global University Bhubaneswar Odisha 752054 India

Abstract

AbstractCalix[4]pyrroles are an important class of oligopyrrolic macrocycles and have found applications in many diverse fields including anion recognition. To modulate the properties of the calix[4]pyrrole, several structural modifications are realized. The core‐expansion has attracted extra attention as it provides larger cavity‐size compared to parent calix[4]pyrrole(s). This review highlights the synthetic development of various core‐expanded calix[4]pyrroles and their applications in anion‐binding properties. Emphasis is given to the changes in the binding properties observed with expanded versions of calix[4]pyrrole(s) in both solution and the solid states. The expanded versions of calix[4]pyrrole do not always show higher binding affinities for larger anions as anticipated. Rather, they display reduced affinities with the anions. The truncated form or asymmetric nature of the expanded versions of calix[4]pyrrole does not probably allow to access all the available binding sites for the anions and hence reduced binding affinities are observed. The receptors which contain a greater number of binding sites and are somehow rigid or preorganized apparently show enhanced binding affinities for anions. The relative binding constants for halide series indicate that the enlarged molecules are more beneficial for largest iodide among others. However, most of the receptors show selectivity towards smallest fluoride over other anions studied.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3