Iron oxide nanoparticles for treatment and diagnosis of chronic inflammatory diseases: A systematic review

Author:

Ansari Shaquib Rahman1ORCID,Mahajan Jessica2ORCID,Teleki Alexandra1ORCID

Affiliation:

1. Department of Pharmacy, Science for Life Laboratory Uppsala University Uppsala Sweden

2. School of Applied Sciences Abertay University Dundee Scotland UK

Abstract

AbstractChronic inflammatory conditions are among the most prevalent diseases worldwide. Several debilitating diseases such as atherosclerosis, inflammatory bowel disease, rheumatoid arthritis, and Alzheimer's are linked to chronic inflammation. These conditions often develop into complex and fatal conditions, making early detection and treatment of chronic inflammation crucial. Current diagnostic methods show high variability and do not account for disease heterogeneity and disease‐specific proinflammatory markers, often delaying the disease detection until later stages. Furthermore, existing treatment strategies, including high‐dose anti‐inflammatory and immunosuppressive drugs, have significant side effects and an increased risk of infections. In recent years, superparamagnetic iron oxide nanoparticles (SPIONs) have shown tremendous biomedical potential. SPIONs can function as imaging modalities for magnetic resonance imaging, and as therapeutic agents due to their magnetic hyperthermia capability. Furthermore, the surface functionalization of SPIONs allows the detection of specific disease biomarkers and targeted drug delivery. This systematic review explores the utility of SPIONs against chronic inflammatory disorders, focusing on their dual role as diagnostic and therapeutic agents. We extracted studies indexed in the Web of Science database from the last 10 years (2013–2023), and applied systematic inclusion criteria. This resulted in a final selection of 38 articles, which were analyzed for nanoparticle characteristics, targeted diseases, in vivo and in vitro models used, and the efficacy of the therapeutic or diagnostic modalities. The results revealed that ultrasmall SPIONs are excellent for imaging arterial and neuronal inflammation. Furthermore, novel therapies using SPIONs loaded with chemotherapeutic drugs show promise in the treatment of inflammatory diseases.This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging

Funder

H2020 European Research Council

Science for Life Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3