Unprecedented monsoon precipitation over southwest Pakistan in 2022: Regional processes in moistening the climatological heat low

Author:

Annamalai H.1ORCID

Affiliation:

1. International Pacific Research Center (IPRC), Department of Oceanography University of Hawaii at Manoa Honolulu Hawaii USA

Abstract

AbstractDuring the 2022 Asian summer monsoon, the climatological driest parts of Sindh and Balochistan provinces in southwestern Pakistan and the northern Arabian Sea (regions of climatological heat low, HLOW) experienced unprecedented precipitation (>500% of the normal) whereas precipitation was reduced from the Indo‐Gangetic Plain to the tropical western Pacific. Our working hypothesis is that the weakened large‐scale monsoon is a direct response to tropical sea‐surface temperature: wave responses that develop in response to changes in diabatic heating anomalies over the regional precipitation centers within the Asian monsoon intensify and transition HLOW into an anomalous moist low. To validate the hypothesis, process‐oriented diagnostics are applied to European Centre of Medium‐range Weather Forecasts Reanalysis v5 (ERA5), and numerical experiments are performed with a linear atmospheric general circulation model. Model solutions confirm that the weakened large‐scale monsoon, essentially a linear response, is determined by persistent warm sea‐surface temperature and enhanced precipitation anomalies over the equatorial and southeastern Indian Ocean–Maritime Continent, and Rossby waves emanating from there, and from continental India, deepen the HLOW. Concomitantly, as a Rossby wave response to negative precipitation anomalies over the northern Bay of Bengal and Indochina during June, and their poleward migration during July–August, positive height anomalies develop and intensify over northern India. The resultant horizontal pressure gradient between HLOW and northern India drives concentrated low‐level wind anomalies that are efficient in advecting the strongest climatological moisture gradient to precondition the lower troposphere during June, and in determining the unprecedented precipitation during July–August when the seasonal cycle prevails over HLOW. Model sensitivity to horizontal moisture advection confirms ERA5 diagnostics. Nearly identical tropical forcing and large‐scale weakened monsoon responses are observed during 2010 and 2020. In these years, diagnostics identify subtle changes in latitudinal position of negative precipitation anomalies over the Bay of Bengal and Indo‐Gangetic Plain that lead to lesser contribution by horizontal moisture advection, resulting in weaker positive precipitation anomalies over southwest Pakistan.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3