Affiliation:
1. Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi China
2. Queen Mary University of London Engineering School Northwestern Polytechnical University Xi'an Shaanxi China
Abstract
AbstractFluorene‐containing branched poly(aryl‐ether‐ketone) (BFPAEK) with terminal hydroxyl groups is synthesized by random copolycondensation reaction; then, the CF@BFPAEK/PEEK laminated composite is prepared by the “powder impregnation‐high temperature compression molding” method with poly(ether‐ether‐ketone) (PEEK) as the matrix and BFPAEK‐modified carbon fiber (CF@BFPAEK) as the reinforcement. When the content of branched units in BFPAEK is 10% and the coating amount of BFPAEK on the carbon fiber (CF) surface is 3 wt%, the CF@BFPAEK/PEEK laminated composite has outstanding mechanical properties, with an interlaminar shear strength (ILSS) of 57.3 MPa and flexural strength of 589.4 MPa, which are 80.2% and 44.3% higher than those of the pure CF/PEEK laminated composite (31.8 and 408.4 MPa), respectively. After 288 h of hydrothermal aging and high/low‐temperature alternating aging, the corresponding retention rate of ILSS and flexural strength are respectively 87.9% and 84.7%, higher than those of pure CF/PEEK laminated composites (74.5% and 70.4%). The thermal conductivity coefficient and temperature for 5% weight loss of CF@BFPAEK/PEEK laminated composite are 1.85 W m−1 K−1 and 538.0°C, respectively.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献