Protective mechanisms of quercetin in neonatal rat brain injury induced by hypoxic‐ischemic brain damage (HIBD)

Author:

Xu Yan‐hong1,Xu Jin‐bo1,Chen Lu‐lu1,Su Wei1,Zhu Qing1,Tong Guang‐lei1ORCID

Affiliation:

1. Anhui Provincial Children's Hospital Hefei China

Abstract

AbstractNeonatal hypoxic‐ischemic brain damage (HIBD) is a leading cause of infant mortality worldwide. This study explored whether quercetin (Que) exerts neuroprotective effects in a rat model of HIBD. A total of 36 seven‐day‐old Sprague–Dawley rats were divided into control, Que, HI, and HI + Que groups. The Rice method was used to establish HIBD in HI and HI + Que rats, which were treated with hypoxia (oxygen concentration of 8%) for 2 h after ligation of the left common carotid artery. The rats in the HI + Que group were intraperitoneally injected with Que (30 mg/kg) 1 h before hypoxia, and the rats in the Que group were only injected with the same amount of Que. Brain tissues were harvested 24 h postoperation and assessed by hematoxylin and eosin staining, 2,3,5‐triphenyltetrazolium chloride staining, and terminal deoxynucleotidyl transferase dUTP nick‐end labeling assay; relative gene and protein levels were evaluated by RT‐qPCR, IHC, or western blot (WB) assay. Brain tissue morphologies were characterized by transmission electron microscopy (TEM); LC3B protein levels were assessed by immunofluorescence staining. Escape latencies and platform crossing times were significantly improved (p < .05) in HI + Que groups; infarct volume significantly decreased (p < .001), whereas the numbers of autophagic bodies and apoptotic cells increased and decreased, respectively. Meanwhile, NLRX1, ATG7, and Beclin1 expressions were significantly upregulated, and mTOR and TIM23 expressions, LC3B protein level, and LC 3II/LC 3I ratio were significantly downregulated. Que exerted neuroprotective effects in a rat model of HIBD by regulating NLRX1 and autophagy.

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3