Multi‐metallic Layered Catalysts for Stable Electrochemical CO2 Reduction to Formate and Formic Acid

Author:

Nguyen Tu N.12,Khiarak Behnam Nourmohammadi1,Xu Zijun3,Farzi Amirhossein3,Sadaf Sharif Md.4,Seifitokaldani Ali3,Dinh Cao‐Thang1ORCID

Affiliation:

1. Department of Chemical Engineering Queen's University Kingston ON, K7L 3N6 Canada

2. Helen Scientific Research and Technological Development Co., Ltd Ho Chi Minh City 700000 Vietnam

3. Department of Chemical Engineering McGill University Montreal Quebec H3A 0C5 Canada

4. Centre Energie Matériaux et Télécommunications Institut National de la Recherche Scientifique (INRS)-Université du Québec 1650 Boulevard Lionel-Boulet Varennes Quebec J3X 1S2 Canada

Abstract

AbstractElectrochemical CO2 reduction (ECR) to value‐added products such as formate/formic acid is a promising approach for CO2 mitigation. Practical ECR requires long‐term stability at industrially relevant reduction rates, which is challenging due to the rapid degradation of most catalysts at high current densities. Herein, we report the development of a bismuth (Bi) gas diffusion electrode on a polytetrafluoroethylene‐based electrically conductive silver (Ag) substrate (Ag@Bi), which exhibits high Faradaic efficiency (FE) for formate of over 90 % in 1 M KOH and 1 M KHCO3 electrolytes. The catalyst also shows high selectivity of formic acid above 85 % in 1 M NaCl catholyte, which has a bulk pH of 2–3 during ECR, at current densities up to 300 mA cm−2. In 1 M KHCO3 condition, Ag@Bi maintains formate FE above 90 % for at least 500 hours at the current density of 100 mA cm−2. We found that the Ag@Bi catalyst degrades over time due to the leaching of Bi in the NaCl catholyte. To overcome this challenge, we deposited a layer of Ag nanoparticles on the surface of Ag@Bi to form a multi‐layer Ag@Bi/Ag catalyst. This designed catalyst exhibits 300 hours of stability with FE for formic acid ≥70 % at 100 mA cm−2. Our work establishes a new strategy for achieving the operational longevity of ECR under wide pH conditions, which is critical for practical applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3