A Core/Shell Bi2S3/BiVO4 Nanoarchitecture for Efficient Photoelectrochemical Water Oxidation

Author:

Xiong Yuli1ORCID,Zhang Duo1,Zhao Xiaoxuan1,Peng Bo1,Yu Peng1,Cheng Zhenxiang2ORCID

Affiliation:

1. College of Physics and Electronic Engineering Chongqing Normal University Chongqing 401331 P. R. China

2. Institute for Superconducting and Electronic Materials Faculty of Engineering and Information Sciences University of Wollongong, Innovation Campus Squires Way North Wollongong NSW 2500 Australia

Abstract

AbstractThe construction of nanostructured heterostructure is a potent strategy for achieving high‐performance photoelectrochemical (PEC) water splitting. Among these, constructing BiVO4‐based heterostructure stands out as a promising method for optimizing light‐harvesting efficiency and reducing severe charge recombination. Herein, we present a novel approach to fabricate a type II heterostructure of core/shell Bi2S3/BiVO4 using electrolytic deposition and successive ionic layer adsorption and reaction (SILAR) methods. We identify the type II heterostructure and the difference in fermi energy using UV‐Vis spectroscopy, X‐ray photoelectron spectroscopy, and PEC measurements. This redistribution of charges due to the fermi energy difference induces an interfacial built‐in electric field from BiVO4 to Bi2S3, reinforcing the photogenerated hole transfer kinetics from BiVO4 to Bi2S3. The Bi2S3/BiVO4 heterostructure exhibits a superior photocurrent (6.0 mA cm−2), enhanced charge separation efficiency (85 %), and higher open‐circuit photovoltage (350 mV). Additionally, the heterostructure displays a prolonged average lifetime of charge (1.63 ns), verifying this heterojunction could boost interfacial carriers’ migration via an additional nonradiative quenching pathway. Furthermore, the lower photoluminescence (PL) intensity demonstrates the interfacial built‐in electric field is beneficial for boosting charge migration.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing Municipality

Chongqing Municipal Education Commission

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3