Titanium Carbide (Ti3C2Tx) MXene for Sequestration of Aquatic Pollutants

Author:

Madhu Swedha1,MacKenzie Jayden1,Grewal Kuljeet Singh2,Farooque Aitazaz A.23,Koleilat Ghada I.4,Selopal Gurpreet Singh1ORCID

Affiliation:

1. Department of Engineering Faculty of Agriculture Dalhousie University Truro B2N 5E3 NS Canada

2. Faculty of Sustainable Design Engineering University of Prince Edward Island Charlottetown PE C1A4P3 Canada

3. Canadian Centre for Climate Change and Adaptation University of Prince Edward Island St Peters Bay PE Canada

4. Department of Process Engineering and Applied Science, & Department of Electrical and Computer Engineering Dalhousie University Halifax 5273 Dacosta Row B3H 4R2 Canada

Abstract

AbstractThe rapid expansion of industrialization has resulted in the release of multiple ecological contaminants in gaseous, liquid, and solid forms, which pose significant environmental risks to many different ecosystems. The efficient and cost‐effective removal of these environmental pollutants has attracted global attention. This growing concern has prompted the synthesis and optimization of nanomaterials and their application as potential pollutant removal. In this context, MXene is considered an outstanding photocatalytic candidate due to its unique physicochemical and mechanical properties, which include high specific surface area, physiological compatibility, and robust electrodynamics. This review highlights recent advances in shaping titanium carbide (Ti3C2Tx) MXenes, emphasizing the importance of termination groups to boost photoactivity and product selectivity, with a primary focus on engineering aspects. First, a broad overview of Ti3C2Tx MXene is provided, delving into its catalytic properties and the formation of surface termination groups to establish a comprehensive understanding of its fundamental catalytic structure. Subsequently, the effects of engineering the morphology of Ti3C2Tx MXene into different structures, such as two‐dimensional (2D) accordion‐like forms, monolayers, hierarchies, quantum dots, and nanotubes. Finally, a concise overview of the removal of different environmental pollutants is presented, and the forthcoming challenges, along with their prospective outlooks, are delineated.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3