Continuous Fatty Acid Decarboxylation using an Immobilized Photodecarboxylase in a Membrane Reactor

Author:

Zhou Jianle1,Hollmann Frank2,He Qi1,Chen Wen1,Ma Yunjian1ORCID,Wang Yonghua13

Affiliation:

1. School of Food Science and Engineering South China University of Technology Guangzhou 510640 China

2. Department of Biotechnology Delft University of Technology van der Maasweg 9 2629HZ Delft The Netherlands

3. Guangdong Youmei Institute of Intelligent Bio-manufacturing Co. Ltd Foshan Guangdong 528200 China

Abstract

AbstractThe realm of photobiocatalytic alkane biofuel synthesis has burgeoned recently; however, the current dearth of well‐established and scalable production methodologies in this domain remains conspicuous. In this investigation, we engineered a modified form of membrane‐associated fatty acid photodecarboxylase sourced from Micractinium conductrix (McFAP). This endeavour resulted in creating an innovative assembled photoenzyme‐membrane (protein load 5 mg cm−2), subsequently integrated into an illuminated flow apparatus to achieve uninterrupted generation of alkane biofuels. Through batch experiments, the photoenzyme‐membrane exhibited its prowess in converting fatty acids spanning varying chain lengths (C6–C18). Following this, the membrane‐flow mesoscale reactor attained a maximum space‐time yield of 1.2 mmol L−1 h−1 (C8) and demonstrated commendable catalytic proficiency across eight consecutive cycles, culminating in a cumulative runtime of eight hours. These findings collectively underscored the photoenzyme‐membrane's capability to facilitate the biotransformation of diverse fatty acids, furnishing valuable benchmarks for the conversion of biomass via photobiocatalysis.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3