Betaine addition as a potent ruminal fermentation modulator under hyperthermal and hyperosmotic conditions in vitro

Author:

Mahmood Mubarik12,Petri Renée Maxine1,Gavrău Ana3,Zebeli Qendrim1ORCID,Khiaosa‐ard Ratchaneewan1ORCID

Affiliation:

1. Department for Farm Animals and Veterinary Public Health Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna Vienna Austria

2. Section of Animal Nutrition, Department of Animal Sciences University of Veterinary and Animal Sciences, Lahore sub‐campus Jhang Jhang Pakistan

3. AGRANA Sales & Marketing GmbH Vienna Austria

Abstract

AbstractBACKGROUNDClimatic and dietary shifts predispose ruminal microbes to hyperthermal and hyperosmotic stress, leading to poor fermentation and subsequently adverse effects on ruminant productivity. Betaine may function as substrate, osmolyte, antioxidant, and methyl donor for microbes. However, its effect depends on the extent of microbial catabolism. This study revealed the ruminal disappearance kinetics of betaine and its dose effect on ruminal fermentation during thermal and osmotic stress using a rumen simulation technique.RESULTSThree different betaine doses were used: 0, 50, and 286 mg L−1; each was assigned to two incubation temperatures (39.5 and 42 °C) and two osmotic conditions (295 and 420 mOsmol kg−1). Betaine disappeared rapidly within the first 6 h of incubation; however, the rate was lower during hyperosmotic stress (P < 0.05), the stress condition that also suppressed the overall fermentation and degradation of organic nutrients and decreased the bacterial diversity (P < 0.001). During hyperosmotic stress, betaine shifted the fermentation pathway to more propionate (P < 0.05). Betaine counteracted the negative effect of hyperthermal stress on total short‐chain fatty acid concentration (P < 0.05) without affecting the composition. Both stress conditions shifted the bacterial composition, but the effect of betaine was minimal.CONCLUSIONDespite its rapid ruminal disappearance, betaine modulated microbial fermentation in different ways depending on stress conditions, indicating the plasticity of the betaine effect in response to various kinds of physicochemical stress. Although betaine did not affect the abundance of ruminal microbiota, the enhanced fermentation suggests an improved microbial metabolic activity under stress conditions. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Funder

Veterinärmedizinische Universität Wien

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3