Explicable recommendation model based on a time‐assisted knowledge graph and many‐objective optimization algorithm

Author:

Zheng Rui1ORCID,Wu Linjie1,Cai Xingjuan12ORCID,Xu Yubin1

Affiliation:

1. Shanxi Key Laboratory of Big Data Analysis and Parallel Computing Taiyuan University of Science and Technology Taiyuan People's Republic of China

2. State Key Lab. for Novel Software Technology Nanjing University Nanjing People's Republic of China

Abstract

SummaryExisting research on recommender systems primarily focuses on improving a single objective, such as prediction accuracy, often ignoring other crucial aspects of recommendation performance such as temporal factor, user satisfaction, and acceptance. To solve this problem, we proposed an explicable recommendation model using many‐objective optimization and a time‐assisted knowledge graph, which utilizes user interaction times within the graph to prioritize recommending recently frequently visited items and is further optimized using a many‐objective optimization algorithm. In this model, the temporal weight of user actions at different times is first determined through a time decay function. Additionally, if a user clicks on the same item again, the current action's temporal weight is set to one. This strategy prioritizes recent user actions and frequently visited items, reflecting current interests and preferences better. Next, the created knowledge graph is used to create a list of potential recommendations. Embedding methods obtain the vectors for entities and relations in the path. These vectors, combined with the temporal weight of actions, quantify the explainability of user recommendations. Optimizing the rest of the recommendation performance with many objective algorithms while focusing on the user's recent frequent visits to the item. Finally, the outcomes of the research study indicate that, compared to other explicable recommended methods, our model, considering temporal factor, improved average accuracy by 11%, diversity by 1%, and explainability by 21% in the Useraction1 data set. Results in other data sets also indicate that the proposed model maintains accuracy, diversity, and novelty while enhancing explainability.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3